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Abstract. A generalisation of the three-state Potts model is introduced, which couples spin 
and lattice directions. The model allows, in addition to the usual ferromagnetic and 
antiferromagnetic phases, striped phases which reflect competition between different para- 
meters in the model. One of these is the well-known herringbone phase. Detailed calcula- 
tions of the phase boundaries are made, using mean-field and other methods. 

1. Introduction 

The ground state of nitrogen adsorbed on graphite, at suitable densities, is the so-called 
herringbone phase. In this phase the underlying graphite surface has a hexagonal 
structure; one third of the unit cells are occupied by nitrogen molecules which form 
a triangular superlattice. The molecules then orientationally order. The ordering 
consists of stripes with the molecules in alternate stripes at angles of *in with respect 
to the stripes. The pictorial effect is that of a set of fish backbones; hence the descriptive 
name (some diagrams are given later). 

The phase has been studied experimentally (e.g. Chung and Dash 1977, Diehl et 
al 1982), computationally (e.g. O’Shea and Klein 1977, Mouritsen and Berlinsky 1982) 
and theoretically (e.g. Migone et al 1983, Schick 1983). It seems reasonably clear that 
the driving mechanism is the quadrupolar interaction between nitrogen molecules on 
neighbouring sites. This interaction prefers neighbouring molecules to form a ‘T’ like 
structure, i.e. perpendicular to each other with the end of one molecule pointing at 
the centre of its neighbour. The molecules are kept in the surface plane by the potential 
of the graphite substrate. A molecule on a given site can, however, only point at two 
of its neighbours, and be pointed at by another two. Two others are left. However, 
the four neighbours whose orientations are given, together with repetitions of this 
process, are sufficient to build up an unfrustrated ordered ground state. This is the 
herringbone structure. 

The herringbone structure also seems to occur in substances other than nitrogen. 
Hydrogen, a quantum liquid, exhibits the phase at low temperatures (Harris and 
Berlinsky 1979). The smectic E liquid crystal is a layered phase, in which the molecules 
within each layer adopt the herringbone structure (Meyer 1975, 1976). There have 
also been reports of herringbone structures adopted by systems of large molecules 
adsorbed on graphite. It seems quite a general phenomenon (Taub 1988). 

t Permanent address: Department of Mathematics, University of Southampton, Southampton SO9 5 N H ,  UK. 
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The herringbone ground state is sixfold degenerate. We seek a spin model with 
such a ground state (and perhaps others). Some theoretical works, especially in the 
chemistry literature, seek an accurate mapping between the input potentials and the 
resulting ground state. This will not be our aim, partly because it obscures what is 
common between all herringbone-like structures. A suitable idealisation is to pin the 
particles to their sites, and to ignore out of plane fluctuations, whether translational 
or rotational. Models which allow continuous spin degrees of freedom can be used, 
as for instance by Schick (1983) or Meyer (1975, 1976). The finite degeneracy of the 
ground state results from the coupling of the continuous degrees of freedom with the 
(finite number of) lattice directions. We seek rather a model with discrete spin 
directions, which has a ground state with the right symmetry, and into which the lattice 
direction-spin direction coupling is already built. Such a model should define the 
universality class of the transition. 

One such model was the so-called n-component cubic model, discussed in this 
context by Nienhuis et a1 (1983). We propose here an alternative, based on the intuition 
of the basic T-like structure of nearest neighbours. This model has three states per 
site, corresponding to molecules pointing in the directions of the nearest neighbours. 
It is apparent that, for a suitable Hamiltonian function, the herringbone ground state, 
with its sixfold degeneracy, is a possibility. We note that in the experimental case of 
nitrogen, the molecules do not quite point at their neighbours in the ground state. 
This does not however affect the symmetry or degeneracy of the ground state. 

Models which have n equivalent states were introduced by Potts (1952) many years 
ago. Since that time there has been much interest in the phase diagram and the nature 
of the phase transitions in the three-state Potts model (e.g. Nienhuis et a1 1979). This 
model, depending on its parameters, has either a ferromagnetic or an antiferromagnetic 
ground state, for the two-dimensional triangular lattice discussed here. But in this 
model spin directions and lattice directions exist in different spaces. In this work we 
construct a Potts model which couples spin and lattice directions. 

In this paper we study this model. We discover its ground states. We are pre- 
dominantly, though not exclusively, interested in its applicability to understanding the 
herringbone phase. The plan of the paper is as follows. In § 2 we describe the model 
in more detail. In P 3 we determine its ground states, and investigate the phase 
boundaries by a number of different methods. Finally in 9 4 we make some concluding 
remarks. 

2. Model 

We consider a system of Potts-like spins on a two-dimensional triangular lattice. We 
identify the three Potts spin directions with the three principal axes of the lattice as 
shown in figure 1. Symmetry considerations then allow four possible nearest-neighbour 
energies, as shown in table 1. The total Hamiltonian can now be written 

H = t c [ E l  s,,, k,r,t&tr,) + 1 - %J( 1 - a,,,,) 
{ U )  

+ E A  1 - 6,,, )( &,,, + 1 + E A  1 - S,,# )( 1 - s , , ,  1 ( 1 - a,),,, )I (2.1) 
where the sum is taken over nearest-neighbour sites, rz, is the vector joining the sites 
I and J, and the three possible directions of r,, are associated with the spin directions 
U,, as shown in figure 1. 
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0 

0 0 Lx 
Figure 1. Triangular lattice. Double headed arrows show the three possible Potts orienta- 
tions, labelled l ,  2, 3. 

Table 1. Nearest-neighbour energies. The spins are on neighbouring sites in the x direction. 
The spins are given double arrows to emphasise that the sense is not important. 

_ _ _ _ _ ~  

Configuration Label Degeneracy Energy 

From the point of view of the statistical mechanics of the model the four independent 
variables of the model E ,  can be reduced to three by choosing a zero of energy. We 
now show that by exploiting symmetry considerations the number of free variables 
can in fact be further reduced to two. 

We use the sum rule 

5 c a , , )  = N (2.2) 
{ IJ 1 

where N is the number of sites in the lattice. This result becomes evident when it is 
recalled that each site i with spin U, in an  arbitrary direction has two nearest neighbours 
in direction U, .  

Equation (2.1) can now be rearranged as 

H [ ( ~ 1 - 2 & ~ + ~ 4 ) ~ u , u , ~ u , r , , ~ u , r , ,  
{ IJI 

i- ( E *  - ~ q ) a ~ , ~ , (  1 - a u , r , , ) (  1 - a u , r , , )  + ( E 3  - & 4 ) ( 6 u , r , ,  a u , r , , )  E41 (2.3) 
which can be further transformed using the sum rule (2.2) to 

H = N ( 2 ~ 3 - i -  ~ 4 )  +ix [J,a,,,16u,,, ,6uJr,1+ J , ( 1  -au,,, ,)(l - ~ u ~ r , , ) ~ c , u ~ I  (2.4) 
{ U )  

where 

J ,  = e ,  - 2 ~ ,  + J ? =  E Z - E ~ .  

The form of the Hamiltonian (2.4) is the same as that of (2.1); the energies J ,  and 
J2 correspond to renormalised energies for configurations ct and p in table 1,  whereas 
the renormalised energy for configurations y and 6 is zero. The constant energy term 
N ( ~ E , +  E ~ )  does not contribute to the statistical mechanics. This form of Hamiltonian 
is gratifyingly close to the Potts model form, in which unlike spins on nearest-neighbour 
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sites couple with zero energy. The form (2.4) generalises the simple Potts model in a 
minimal way to allow for coupling between lattice and spin directions. 

In the following sections we study some aspects of the statistical mechanics of the 
Hamiltonian (2.4). 

3. Statistical mechanics 

3.1. The ground stale 

The Hamiltonian (2,4) sustains four ground states, which we label: ferromagnetic ( F ) ,  
herringbone (HB) ,  blanket-stitch ( BS) and antiferromagnetic ( AF). The respective 
ground-state configurations are shown in figure 2 ,  and their ground-state energies 
shown in table 2. 

Broadly speaking, ferromagnetism is favoured if both LY and p configurations have 
negative energy and antiferromagnetism is favoured if they both have positive energy. 
The blanket-stitch and herringbone ground states result from compromises which 
favour a but disfavour p (BS) or vice versa (HB) .  More detailed analysis of the 
stabilities of the various ground states shows that the regions where the compromise 
ground states remain valid are rather narrow, and there is a wide regime where 
ferromagnetism obtains. The results of this analysis are shown in figure 3. 

The line J1 = J2 corresponds to the well studied ordinary Potts model, which has 
ferromagnetic or antiferromagnetic ground states, depending on the sign of J. The H B  
ground state has the same symmetry and degeneracy as the herringbone states observed 
in nitrogen and hydrogen monolayers adsorbed on graphite surfaces. Both the BS and 

---- -1 / -  
Figure 2. The ground-state configurations. 

Table 2. Ground-state energies, E /  N 

State Energy per site Degeneracy 

F J ,  + 2 J ,  3 

BS f J ,  12 
H B  J z  6 

A F  0 6 
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I J 2  

\ HB 

J 2  =-J,  . 
Figure 3. Regions of stability for the different ground states. 

H B  phases are striped phases, and as such are analogous to striped phases occurring 
in other models with competing interactions, such as the A N N N I  model and clock 
models (Fisher and Selke 1980). In particular, the F-HB and F-BS transitions at T = 0 
are multiphase points, in the sense that at these transitions the ground state is degenerate 
with respect to change of stripe phase and wavelength. 

From here on we concentrate on the statistical mechanics of the H B  and F phases. 

3.2. Mean-Jield theory 

We confine our interest to the region in which the F and H B  phases are competing, i.e. 
J, > 0, J2 < 0. It will be convenient to parametrise J ,  and J2 as follows: 

J1 = J (  1 - a ) J~=-Jcu (3.1) 
and to measure temperatures T in terms of J: 

f = K B T / J  = p - I .  (3.2) 
From now on we drop the tilde over T ;  equivalently J = 1. 

The phase diagram is now characterised by the parameters T, a ;  at T = 0, 0 < a < 
is the H B  region, and a > t is the F region. 

The ferromagnetic phase is uniform. The low-T phase is characterised by prob- 
abilities n, = ( i  = 1,2,3)  of occupation by spin direction i. Without loss of generality 
we assume the ordering to occur in the 1 direction. The relevant order parameter is 

(3.3) 
The free energy difference AA between the ordered ferromagnetic phase and the 

(3.4) 

(3.5) 
There is a first-order phase transition between the disordered and ferromagnetic states 
along the line TFD = 0.71(3a - 1). 

S = n  -1 1 3. 

disordered phase is given in the mean-field approximation by 

AA(S)  = T[(f+ S )  In( 1 +3S)  + (3-  S )  In( 1 -$)I +$’( 1 - 3 a  1 

f + S = { 1 + 2 e x p [ 3 p ~ (  1 - 3 a  ) ] } - I ,  

yielding the self-consistent equation for S 
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The herringbone phase, by contrast, is divided into two sublattices A and B, as 
shown in figure 2. We suppose without loss of generality that orientation 2 is pre- 
dominant in A and orientation 3 is predominant in B. The low- T phase is characterised 
by n f  , n: ,  where n f  = n = p ,  n ;  = n f  = q and n t  = nf  = r. There are now two relevant 
order parameters: 

x = q - r  y = ) -  P. (3.6) 

In the low-T limit q = 1, p = r = 0, and hence x = 1, y = f .  The free energy difference 
between the ordered and disordered phases is 

AA(x, y)  = T[(f -y)  In( 1 -3y) + ( f + f y  +fx)ln( 1 ++y+$x) 

+ (f +fy - fx )  In( 1 +$y -$x)] ++( 1 - 3a)y2  - f( 1 - 3a)x2  (3.7) 
yielding mean-field equations 

f -  y = (1 $2 cosh px(1 -a) exp[-3py(l -a)]}-' 

2 s i n h p x ( l - a )  
2 c o s h B x ( l - a ) + e x p 3 p y ( l - 3 a ) '  

X =  

We now obtain, for low a, a second-order phase transition from the disordered to 
the HB phase along the line THB = 2/3( 1 - a). There is a tricritical point at a = ;, T = 8. 
Beyond this tricritical point the transition is first order. There is a first-order transition 
between the F and HB phases which remains very close to a = 4, though for T >  0 there 
is a very small region of a < f  where the F state is more stable than the H B  state. We 
show the phase diagram thus calculated in figure 4. 

3.3. Beyond meantfield theory 

The mean-field theory is, however, misleading in a crucial way near a = f ,  where the 
F and H B  phases have comparable stability. Indeed, as observed above, the point 

0 
a 

Figure 4. The mean-field phase diagram. -, first-order transition; - - -, second-order 
transition, x , tricritical point. 
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( a  = i, T = 0) is a multiphase point. At this point the surface energy between two HB 

phases with the same glide direction but out of phase stripes, or between the H B  phase 
and the F phase (along a suitable direction, and with suitable relative orientations) is 
zero. At low temperatures there is no cost in introducing domain walls (albeit in 
suitable directions) and hence any ordered phase is destroyed. This is the basis of the 
method of Muller-Hartmann and Zittarz (1977), who calculate the transition tem- 
perature of the two-dimensional Ising model by calculating the temperature at which 
the free energy of a domain wall between regions of opposite spins disappears. Here 
we use this method to construct the phase diagram near a =$, where the mean-field 
transition temperatures are significantly reduced by fluctuation effects. 

We first consider the ferromagnetic region, a > i. We consider two domains in the 
2 and 3 directions respectively, separated by a wall in the x direction. The basic 
situation is shown in figure 5. The ground state of the wall is straight; the wall is N 
lattice spacings = N long. A tedious though elementary calculation yields a ground- 
state energy of N(2a  - 1); this is the difference between the ground-state energy of a 
monodomain system and that of a system with the boundaries. The wall is soft at 
a = $, as remarked upon above. We make a solid on solid ( S O S )  model of the behaviour 
of the wall at finite temperatures. This model includes steps, as shown in figure 5 ( b ) .  
Each step has energy ( a  -$). There are 2 N  possible step positions, N in each direction. 
In the spirit of the SOS approximation we ignore ( a )  fluctuations in the bulk states, 
such as, for instance, the possibility of spins in the 1-direction appearing at the interface, 
( b )  the possibility of ‘overhangs’, i.e. the possibility of the wall position being non- 
monotonic in the x direction, and (c)  interactions between neighbouring steps. In this 
approximation the surface free energy per unit length is given by 

where 

\ \ \ \ \ \  

Figure 5. Domain boundaries in the ferromagnetic regime. ( a )  The domain wall in its 
ground state. This wall has energy 2(a - f )  per unit length. ( b )  The domain wall with a 
step in i t .  Each step has energy ( a  - + I .  
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is the partition function, per unit length, associated with steps. Hence 

y ( T ) = 2 a - 1 - 2 T n { l + e x p [ - p ( a - f ) ] } .  (3.11) 

We expect a phase transition when the wall free energy goes soft, or equivalently for 

TF = 2.08( - i). (3.12) 

We now discuss the herringbone region a <;. The crucial boundaries and walls 
are shown in figure 6. We make the same S O S  approximation as above. The wall 
energy is now N (  1 -2a) ,  which as before becomes soft at a = 4. The step energy is 
a, which however does not soften at a =;. The arguments of equations (3.9)-(3.11) 
can be repeated, yielding a wall free energy per unit length of 

y (  T )  = 1 - 2 a  - 2T In[ 1 + exp( - p a ) ] .  (3.13) 

The condition y (  T )  = 0 yields the equation 

exp[p,(f-a)]  = l+exp(-p,a) .  (3.14) 

Close to a = $  this has the limit 

(3.15) 

The modified phase diagram in the region a =; is shown in figure 7 .  
This calculation shows that, near a = i, fluctuations substantially suppress the 

ordering predicted by mean-field theory, and that at a =+ the ordered state persists 
down to T = 0. No prediction, of course, can be made by this method about the nature 
of the order-disorder transitions. An interesting feature is the shape of the ordering 
transition line near a = f. On the ferromagnetic side ( a  > i) T, is linear in ( a -+); this 
reflects the fact that both the wall energy and the step energy become soft at a =$. 
On the other hand, on the herringbone side ( a  <i), T,-[ln(i-a)]- ' ,  because here 
while the wall energy is soft, the step energy remains finite at a =;, 

. . . . . . . . . . . . . . . . . . . . .  (a1 

\ \ \ \ \  

\ \ \ \  \ 

/ / / /  
Figure 6. Domains in the HB regime. ( a )  The ground state of the domain wall, with energy 
2 ( f -a )  per unit length. ( b )  Domain wall with step.  Step has energy a, 
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a 

Figure 7. The phase diagram near a = f .  - - -, mean-field predictions; -, predictions of 
Muller-Hartmann-Zittarz method. 

4. Conclusions 

We have discussed the properties of a simple two-dimensional lattice model with three 
states per site. The model is a simple generalisation of the much studied three-state 
Potts model. It was designed to describe those systems which have low-temperature 
herringbone phases. For a certain range of parameters of the model, there is a 
low-temperature herringbone phase. We speculate that from the point of view of 
critical properties this model may be the simplest realisation of the herringbone phase. 
For this reason it may well be worthwhile to investigate its properties more accurately 
by simulation. An exact solution may also exist. 

The model also has ferromagnetic and antiferromagnetic states, like the orthodox 
Potts model, and another new phase, which we have labelled, for pictorial reasons, 
the blanket-stitch phase. As far as we know such a phase has not been observed, but 
it would be interesting to know what physical circumstances would be favourable for 
its formation. We make the general observation that the ferromagnetic and  herringbone 
phases would be ‘close packed’ phases in a molecular sense, whereas the other two 
phases are not, which might explain why they are rarer, if not absent, in nature. 

There is, in addition, competition between ferromagnetic and herringbone phases. 
There is a multiphase point between these two phases, and  in this region the ordering 
phase transition is strongly suppressed. We have investigated this suppression by 
considering a solid on solid model of domain wall free energy. 

The model we have introduced has some appealing features. In particular, it has 
a finite number of states. It therefore well describes the phase transition of systems 
which have easy axes and  thus ground states with discrete symmetry, such as the 
herringbone phase as observed in N2 adsorbed on graphite in a registered J3 x J 3  
phase. It it thus relatively straightforward to extend the elementary considerations of 
this paper to more detailed quantitative studies using, for instance, finite-size scaling 
with transfer matrices, or Monte Carlo simulation. 

You and Fain (1985, 1986) have studied, experimentally, mixtures of N2 and Ar, 
and C O  and Ar, adsorbed in a registered phase on graphite. The argon atoms are 
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spherical and not orientationally orientable. This complicates the phase behaviour. 
Too many argon atoms and even at low temperatures orientational order is not favoured; 
if there are only a few the ground states are unchanged. However, in an intermediate 
regime the argon atoms and nitrogen molecules can themselves spatially order, in such 
a way as to avoid orientational frustration in the ground state. This occurs in the 
so-called pinwheel phase observed by You and Fain, in which (in the language of this 
paper) one site in four is occupied by argon atoms. Each argon atom is surrounded 
by N,-occupied sites orientationally ordered around it in a ‘pinwheel’ configuration. 
The model introduced in this paper can easily be generalised to include ‘vacancies’ in 
such a way as to describe this phase. 

On the other hand, this model has only limited applicability. It is a strictly in-plane 
model. Harris and Berlinsky (1979) in their description of these phenomena discussed 
crystal fields which aligned molecules either in, or out of, the plane of adsorption. 
They then derive more complicated phases, including herringbone phases in which 
the molecules are tilted with respect to the absorption plane. Such crystal fields can 
be introduced by, for instance, increasing the adsorption density above d3 x d3 registry 
so that the adsorbed phase becomes incommensurate with the underlying lattice. These 
phenomena are not well described by the present model, and although the model can 
be generalised so as to take this account, it is not clear that these efforts would lead 
to an economical description of the physical phenomena. 
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